Monday, March 7, 2016

Fwd: 20 Years Since STS-75



Sent from my iPad

Begin forwarded message:

From: "Gary Johnson" <gjohnson144@comcast.net>
Date: March 7, 2016 at 12:33:28 PM CST
To: "Gary Johnson" <gjohnson144@comcast.net>
Subject: FW: 20 Years Since STS-75

AmericaSpace

AmericaSpace

For a nation that explores
March 5th, 2016

'A Little Adrenaline Rush': 20 Years Since STS-75 (Part 1)

By Ben Evans

 

The STS-75 crew pose for their official portrait. Seated are Pilot Scott "Doc" Horowitz, Commander Andy Allen, and Payload Commander Franklin Chang-Diaz, with Maurizo Cheli, Umberto Guidoni, Jeff Hoffman, and Claude Nicollier standing. Photo Credit: NASA

Twenty years ago, Space Shuttle Columbia rocketed into orbit carrying one of the most unusual experiments on record: the Tethered Satellite System (TSS). Conceived by the late Professor Guiseppe Colombo of Padua University, it was intended to demonstrate the "electrodynamics" of a conducting tether in an electrically charged region of Earth's atmosphere, known as the ionosphere. It was envisioned that Colombo's idea might ultimately lead to systems that would use tethers to generate electricity for spacecraft, employing our planet's magnetic field as a power source. Furthermore, by reversing the direction of the current in the tether, the force created by its interaction with the magnetic field could potentially put objects into motion, thus boosting a spacecraft's velocity without the need for precious station-keeping fuel and counteracting the effects of air drag.

In the late 1980s and early 1990s, this was particularly appealing for the designers of Space Station Freedom and its eventual successor—today's International Space Station (ISS)—as a means of compensating for atmospheric drag on the colossal outpost. Additionally, it was hoped that the concept could lead to the development of devices to trail scientific platforms far below orbital altitudes in difficult-to-study zones, such as the fragile ozone layer over the South Pole. Other applications for tethers included serving as extremely low-frequency antennas, capable of penetrating land and seawater, and perhaps generating artificial gravity or delivering payloads into higher orbits.

During the eight-day STS-46 mission in July 1992, the TSS underwent its first demonstration in Earth orbit. Unfortunately, it achieved only partial success, when its 12.6-mile-long (20.5-km) tether twice became snagged on a bolt in the deployment reel mechanism and refused to unroll more than about 850 feet (260 meters). Nevertheless, the mission proved the concept sufficiently for a reflight to be proposed. In March 1994, NASA Administrator Dan Goldin and Italian Space Agency (ASI) Special Administrator Professor Giampietro Puppi confirmed that the reflight would occur in February 1996. "NASA and ASI long have planned this reflight, but a formal commitment awaited U.S. Congressional approval for NASA to spend Fiscal Year 1994 funds," it was reported. "NASA and ASI completed a study last year of the jointly-developed TSS and confirmed their judgement of its usefulness as a unique shuttle-based experiment carrier." A two-week flight was required to allow additional time for deployment and several days of ionospheric research.

STS-75 got underway on 22 February 1996, kicking off an ambitious two-week mission. Photo Credit: NASA, via Joachim Becker/SpaceFacts.de

STS-75 got underway on 22 February 1996, kicking off an ambitious two-week mission. Photo Credit: NASA, via Joachim Becker/SpaceFacts.de

Most of the original STS-46 crew was kept together for the reflight. Andy Allen, who had flown as pilot of the first mission, was assigned to command its second flight. He was joined by payload commander Franklin Chang-Díaz and mission specialists Jeff Hoffman and Claude Nicollier, all three of whom had also flown aboard STS-46. Hoffman had served as payload commander for the first flight and would exchange roles with Chang-Díaz on the second mission.

"It was unbelievably embarrassing when we discovered the cause of the tether jam," Hoffman told a NASA oral historian, "so there was a significant amount of redesign." Having said this, he believed there was a "strong scientific case" to refly TSS and felt that the inclusion of himself, Allen, Chang-Díaz, and Nicollier, together with payload specialist Umberto Guidoni—who served in a backup role on STS-46—was critical to mission success. "The astronaut office decided that the core of the payload crew … should refly," he said, "which was great, because we were all good friends. There's always a certain stress when husbands get assigned to another flight, but since the families all knew one another, I think that made it a lot easier and more pleasant for everyone." Additionally, NASA carried over STS-46 Lead Flight Director Chuck Shaw onto the second mission. The assignments came in three phases, with Chang-Díaz announced as payload commander in August 1994, Guidoni joining the crew in October, and the other five members named in January 1995.

Seated alongside Andy Allen on Columbia's flight deck for STS-75 was Scott Horowitz, nicknamed "Doc," the first shuttle pilot to hold a PhD. With Claude Nicollier hailing from Switzerland, and two other crewmen—mission specialist Maurizio Cheli and payload specialist Umberto Guidoni—from Italy, STS-75 became the first shuttle flight to feature three European Space Agency (ESA) crew members. Unusually, the crew was split into three shifts for the TSS deployment operation, reverting to a Spacelab-style dual-shift system after the conclusion of activities with the tethered satellite. The "red" team consisted of Horowitz, Cheli and Guidoni, the "blue" team of Chang-Díaz and Nicollier, and a unique "white" team of Allen and Hoffman. The third, staggered shift was added to enable the astronauts to operate a suite of instruments on the TSS to gather real-world data about how conducting tethers might be used to generate electrical power in space. After the deployment operations, it was planned for Allen to rejoin the blue team and Hoffman the reds.

The satellite which formed the primary focus of these three shifts was a 5.2-foot-diameter (1.6-meter) sphere, weighing 1,140 pounds (517 kg), with an outer shell of aluminum alloy and coated with an electrically conducting layer of white paint. It was, however, far more than just an oversized metallic football. Piercing its shell were windows for Sun, Earth, and charged particle sensors, a connector for the umbilical tether and doors providing access to its on-board batteries. Extending from one side of the TSS was a long, fixed instrument boom, whilst a shorter antenna sprouted from its other side. To assist with the thermal control of the satellite, the interior of the spherical shell was painted black.

If one were to break open the TSS, like an egg, the interior comprised two compartments: a payload module, housing its scientific instruments, and a service module for its subsystems. Additionally, in the centre of the spherical shell was a pressurised nitrogen tank, which provided propellant for the satellite's 12 cold gas manoeuvring thrusters. If the satellite could be termed an engineering marvel, the 0.08-inch (2 mm) conducting tether which connected it to a support mast in Columbia's payload bay was nothing less. Surrounding its Nomex core was electrically conducting copper wire, insulated with Teflon and coated with ultra-strong braided Kevlar-29. Jacketing the latter was an outer coat of braided Nomex, which protected it from abrasion and the corrosive effects of atomic oxygen in Earth's rarefied upper atmosphere. During deployment, the tether was unreeled from a mechanism, affixed to a Spacelab pallet and the Mission-Peculiar Equipment Support Structure (MPESS) in the payload bay.

 

Having sustained a tether jam on STS-46, it was hoped that the reflight would generate greater success for the unique Tethered Satellite System. Photo Credit: NASA, via Joachim Becker/SpaceFacts.de

Essentially, the mechanism took the form of a four-sided erectable tower, resembling a small broadcasting pylon, which unfolded slowly out of its storage canister using a series of rollers. As the canister rotated, fibreglass batons popped out of their stowed positions to form cross members ("longerons") which supported the tower's vertical segments. The tower thus deployed to a height of 38.7 feet (11.8 meters) above the shuttle's payload bay, so that when the satellite was released there existed no risk of it hitting any part of the surrounding structure. ("The complexity of the experiment is extreme," Commander Andy Allen noted before launch.)

That, however, was the easy part. Deploying the tower and even the TSS itself had already been done by the STS-46 crew; what Allen and his men planned to do on their 14-day mission in February 1996 was finish the task by getting the satellite and tether to their full 12.6-mile (20.5-km) length and demonstrating Guiseppe Colombo's concept. In fact, no fewer than 12 experiments were planned during the reflight—designated TSS-1R—of which six had been provided by NASA, five by the Italian Space Agency (ASI), and one by the U.S. Air Force. Several of these experiments were mounted on the MPESS. Two were designed to investigate the dynamics of the tether during its deployment phase, another provided theoretical support in the area of electrodynamics, a couple of others employed ground-based equipment to measure electromagnetic emissions from the satellite, and seven others stimulated or monitored the entire assembly as it reeled out of the payload bay. Nearly 14 miles (22 km) of cable occupied the deployment mechanism, although only 12.6 miles (20.5 km) would actually be unraveled.

"Arrivederci, au revoir, auf wiedersehen and adios," Allen radioed cheerily from Columbia's flight deck on 22 February 1996 as he and his crewmates lowered their visors and prepared for launch. "We'll see you in a couple of weeks." Without further ado, and after a perfect countdown, they thundered aloft precisely on time at 3:18 p.m. EST. Unfortunately, the first portion of their ascent did not prove to be quite as perfect. Four seconds after liftoff, Allen and Horowitz spotted a potentially serious problem on their instrument panel. One of the three Space Shuttle Main Engines (SSMEs), it seemed, was running at just 40-percent thrust—far lower than the 104 percent it should have been producing in the seconds after launch. The pilots checked with Mission Control, who verified that their telemetry indicated that all three engines were performing normally at full power and Columbia continued safely into orbit. Of course, if the (ultimately erroneous) instrument readout had been for real, it would have required Allen and Horowitz to perform a Return to Launch Site (RTLS) abort back at the Shuttle Landing Facility (SLF). "We had a couple of moments there that we got a little adrenaline rush," Allen said later. It looked like a "bad run" in the simulator.

Safely in orbit, the crew divided into their respective shifts and blue team members Chang-Díaz and Nicollier set to work activating the TSS-1R support equipment in readiness for a planned deployment of the satellite early on 24 February. Before turning in at the end of his first shift, Hoffman also tested the reel motor and latching mechanism which secured the spherical satellite onto its docking ring atop the still-folded deployment tower. By the 23rd, with less than 24 hours to go before deployment, the mission had encountered its first spate of problems. A computer relay, responsible for sending commands to the satellite, experienced an electrical overload. Known as a Smart Flexible Multiplexer-Demultiplexer, or "Smartflex," the relay had to be switched to a backup component. Although the backup performed satisfactorily, Mission Control opted to spend several hours evaluating it before giving the go-ahead to begin TSS-1R deployment activities.

Next, a laptop computer on the shuttle's aft flight deck encountered difficulties and was exchanged for a spare, which itself behaved sluggishly. Nevertheless, in the early hours of 24 February, the methodical procedure to activate the experiments associated with the satellite got underway. Firstly, the experiments were switched on individually, then together, in an effort to isolate the computer problems. By 3 a.m. EST, all experiments were up and running and data was successfully transmitted through the Smartflex to the laptop and from thence to Mission Control.

 

The Tethered Satellite, pictured in Columbia's payload bay. Photo Credit: NASA, via Joachim Becker/SpaceFacts.de

It was at around this point that managers decided to postpone the deployment until 25 February to gain additional confidence and testing time with the Smartflex. Although it had remained stable thus far, it was desirable to allow engineers to better understand its behaviour after several unexpected crashes and restarts. The delay also gave them ample opportunity to develop work-around procedures should the Smartflex encountered difficulties during the deployment procedure. According to Mission Scientist Nobie Stone, it was like learning to walk before running. One of these confidence-building tests involving "mapping" Earth's charged particle environment, which varied dramatically as Columbia orbited the globe in periods of sunlight and darkness every 45 minutes.

During this time, Nicollier activated the Tether Optical Phenomena (TOP) experiment, developed by Lockheed Martin's Palo Alto Research Laboratory in California. This employed a hand-held, low-light-level television camera to provide visual data in support of tether dynamics and optical effects created by the satellite. Through the overhead flight deck windows, Nicollier acquired stunning views of atmospheric airglow over the South Pole. Elsewhere, the Theory and Modeling in Support of Tether (TMST) investigation provided theoretical electrodynamic assistance to TSS-1R. Meanwhile, as preparations got underway, other experiments underwent tests.

One of these was an electron gun, called the Shuttle Electrodynamic Tether System (SETS), which generated a beam in support of the science experiments. It provided voltage and current readings from the tether throughout the deployment process. Multiple test beams were fired from the electron gun on 24 February to acquire data on the shuttle's ionospheric environs. A day later than originally planned, at 3:45 p.m. EST, the deployment procedure got underway and proceeded without a hitch under the watchful eyes of Hoffman and Guidoni. The satellite pushed itself away from its docking ring on top of the mast, using its cold gas thrusters, and was expected to reach its maximum distance over a 5.5-hour period. "The satellite is rock-solid," Hoffman reported excitedly. It was expected that, after reaching its maximum extent, the satellite and tether would remain extended for 22 hours of studies. A slow "creep" back toward Columbia, precisely choreographed from Mission Control, would have produced a docking back onto the mast at 1:43 p.m. EST on 26 February.

Orbital dynamics resulted in TSS-1R initially deploying "upward" at a rate of just 5.9 inches (15 cm) per minute, and an angle 40 degrees "behind" the shuttle's path. Its motion was carefully controlled by electric motors, which reeled out the tether, and by the satellite's thrusters. An hour into the deployment, it eclipsed the 850 feet (260 meter) limit of its predecessor. Gradually, the deployment rate increased to 1 mph (1.6 km/h), then slowed briefly in order that the 40-degree angle could be reduced to just five degrees. This placed the satellite almost directly "above" the crew cabin. Throughout the process, Columbia's thrusters were disabled to avoid inducing oscillations in the tether. Beginning at a distance of 2,000 feet (610 meters), the satellite undertook a series of very slow rotations in support of the science investigations. The deployment of the tether increased to a peak speed of 5 mph (8.1 km/h) around 8 p.m. EST, by which time the satellite had reached a distance of nine miles (15 km).

Shortly afterwards, things started to go wrong.

 

Copyright © 2016 AmericaSpace - All Rights Reserved

 


 

 

 

AmericaSpace

AmericaSpace

For a nation that explores
March 6th, 2016

'Broken at the Boom': 20 Years Since STS-75 (Part 2)

By Ben Evans

 

Spectacular view of Columbia's payload bay and aft compartment, during STS-75. Photo Credit: NASA, via Joachim Becker/SpaceFacts.de

Two decades ago, Space Shuttle Columbia rocketed into orbit carrying one of the most unusual experiments on record: the reflight of the Tethered Satellite System (TSS-1R). It was intended to demonstrate the "electrodynamics" of a conducting tether in an electrically charged region of Earth's atmosphere, known as the ionosphere, and it was hoped that such technology could lead to sophisticated power-producing sources for spacecraft. As noted in yesterday's history article, the mission began smoothly on 22 February 1996, and within days the seven-man STS-75 crew—Commander Andy Allen, Pilot Scott "Doc" Horowitz, Payload Commander Franklin Chang-Díaz, Mission Specialists Jeff Hoffman, Claude Nicollier, and Maurizio Cheli, and Payload Specialist Umberto Guidoni—was in position to deploy the satellite. The intention was that, as the tether neared its maximum length of 12.7 miles (20.5 km), the deployment rate would have been gradually reduced.

However, shortly after deployment commenced, things started to go awry.

"It was within 1 km of its final length," Hoffman told the NASA oral historian, "at which point we were going to put on the brakes and just let it sit there and start all the experiments. I was recording this huge arc in the tether through the camera, when I started to see little ripples in the tether." To Hoffman's eyes, it reminded him of the tether jam on STS-46—the first TSS mission, back in July-August 1992—and a horrible sense of déjà vu dawned on him. However, at 8:29:35 p.m. EST on 26 February, at a tantalisingly closet-to-target distance of 12.2 miles (19.6 km), it became clear that the tension was due to something else: the tether had not jammed, but snapped.

The shocked astronauts recorded video footage of the incident, and the breakage appeared to have taken place near the top of the mast. "The tether has broken at the boom!" Hoffman radioed urgently. "It is going away from us." In fact, the tether and the satellite were accelerating away from the shuttle at a rate of about 415 miles (670 km) during each 90-minute orbit. By the morning of the 27th, it was trailing Columbia by 3,000 miles (4,830 km), flying some 30 miles (50 km) "above" the shuttle. After winding the remaining 30 feet (10 meters) of tether back into the mechanism, the astronauts retracted the mast to its original configuration.

 

Having sustained a tether jam on STS-46, it was hoped that the reflight would generate greater success for the unique Tethered Satellite System. Photo Credit: NASA, via Joachim Becker/SpaceFacts.de

It was fortuitous that the breakage occurred close to the top of the mast, rather than further outward, close to the satellite. "If it breaks at the bottom, it will fly away from you and you're not in any danger," said Hoffman, "but if it breaks at the top you've got 20 km of tether coming snapping back at you. We had practiced for that eventuality in the simulator. You've got to then cut the tether at the bottom and fly away from it."

Although nearly 24 hours of electrodynamic measurements had been lost, the $154 million reflight was far from a total failure. Already, when the satellite was less than 3.7 miles (6 km) from the mast, the Deployable Core Experiment (DCORE) recorded its first data. This experiment was mounted in the payload bay on a Multi-Purpose Equipment Support Structure (MPESS), and its task was to control the flow of electric current in the tether using a pair of electron guns. Before the break, its first performance run had successfully generated a current of 480 milliamps from the electrical charge that had collected on the satellite's surface. This was about 200 times greater than the levels obtained during the first TSS flight on STS-46 in July 1992. Other experiments in the payload bay continued to function in support of the satellite and tether until as late as 6 March.

"We did get a lot of good data during the deploy," Hoffman told journalists during a space-to-ground news conference. Currents measured during the deployment were at least three times higher than predicted in analytical models. Voltages as high as 3,500 volts were developed across the tether, achieving current levels of 480 milliamps. It was also possible for researchers to study the interaction of gas from the satellite's thrusters with the ionosphere. A first-ever direct observation of an ionized shockwave around the satellite—impossible to study or model in laboratories on Earth—was also accomplished. Moreover, as the satellite and its trailing tether sped through the ionosphere, it was possible to continue investigations in spite of the fact it was no longer physically linked to the shuttle.

It did not detract from the disappointment, however. "If you don't ever get your nose bloodied," said STS-75 Lead Flight Director Chuck Shaw, paraphrasing Theodore Roosevelt's famous comment, "you're not in the game." Capcom Dave Wolf told the astronauts that, whilst it was too early to speculate on the cause of the tether breakage, an investigative board was already getting established to explore the anomaly. The board was headed by Kenneth Szalai, then-director of NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif.

On 27 February, as the satellite and tether flew above the Electronic Signal Test Lab at the Johnson Space Center (JSC) in Houston, Texas, ground controllers transmitted commands to successfully reactivate three of its on-board experiments: the Research on Orbital Plasma Electrodynamics (ROPE), the Magnetic Field Experiment for TSS Missions (TEMAG), and the Research on Electrodynamic Tether Effects (RETE). With a possible two additional days of data-gathering capability now re-established before the satellite's batteries were predicted to expire on 1 March, teams scrambled to assemble a last-minute research timetable to squeeze as much as possible from their dying payload. The ROPE experiment sought to examine the behaviour of charged particles in the ionosphere, as well as those surrounding the satellite and tether, under a variety of conditions. Meanwhile, RETE measured the electrical potential in the plasma "sheath" around TSS-1R and identified waves excited by the tether.

Elsewhere, the Second University of Rome's TEMAG experiment mapped fluctuations in magnetic fields around the satellite. It was hoped that, even though Columbia and TSS-1R were now physically separated, firing electron beams from guns mounted in the payload bay would still disturb the ionosphere and be detectable by the satellite's instruments. On 28 February, scientists were able to observe a sunlight-induced electrical charge on the satellite's surface as it moved through the daytime and nighttime portions of its orbit. They also succeeded in reactivating and acquiring valuable data from two other satellite-mounted experiments. It was even possible, according to Jeff Hoffman, for ground-based observers to see TSS-1R from the southern United States.

 

 

The seven-man STS-75 included four veterans of the first Tethered Satellite System (TSS) mission, as well as marking the first shuttle flight to include as many as three European astronauts. Photo Credit: NASA, via Joachim Becker/SpaceFacts.de

Since the tether breakage, orbital dynamicists had predicted that Columbia would approach to within retrieval distance of TSS-1R on 29 February, and such a scenario was briefly considered, but ultimately discarded due to insufficient propellant margins aboard the shuttle. Had it been approved, a retrieval would have consumed up to six days of crew time. In anticipation of its rendezvous, the satellite's batteries were placed in a low-power mode from the late afternoon of 28 February until the morning of the 29th to keep it alive for long enough. Right on cue, at 12:15 p.m. EST on 1 March, Andy Allen spotted TSS-1R and its tether, from a distance of just 47 miles (75 km). "All we can really see are pinpoints of light, real close together," he radioed to Mission Control. By this time, however, the satellite's batteries were rapidly failing. Very weak signals had been detected through the Merritt Island and Bermuda tracking stations earlier that same day, and no further data was received after 1 March. Still, it endured for far longer than expected, prompting one manager to liken it to the Energizer bunny, for its capacity to keep going.

Despite the measure of success gained on STS-75, the mood aboard Columbia remained sombre. "Every time I turn around and look through the window and I see this empty bay," said Maurizio Cheli, "it's like a part of myself has left." As STS-75's commander, and a veteran of the previous TSS mission, Andy Allen derived an additional blow from the problems endured by the tethered satellite. "Scientists on the ground have lost a lot and we feel for them," he said. "We were looking forward to demonstrating that we could actually retrieve a satellite from 20 km and we've put an amazing amount of work into it." Jeff Hoffman added that the tether loss felt "like getting hit in the stomach."

Of course, as noted in scientific papers later presented at an American Geophysical Union (AGU) conference, the main scientific breakthrough was the discovery of tether currents three times higher than theoretically predicted. It was speculated that this might indicate some degree of ionisation around TSS-1R, even when its cold gas thrusters were switched off. In fact, when the thrusters were activated, the current climbed even higher, to 580 milliamps. Overall, its current-collection and power-generation capabilities proved to be several times higher than predicted.

With the completion of "direct" TSS-1R operations, late on 26 February, the astronauts returned to their dual-shift ("red" and "blue") system of activities and focused on their other mission tasks. The most important of these was the third United States Microgravity Payload (USMP-3), which reflew several sensitive materials experiments. Although USMP had flown twice before, it had never been aboard a dual-shift shuttle mission, and this presented a number of obstacles. "Because they were growing crystals, it required an extremely quiet shuttle," recalled Jeff Hoffman. "When the scientists discovered that we were going to be a two-shift flight, so somebody would always be awake, they were pretty upset. Just because of the tight scheduling, it couldn't be moved to another flight."

On STS-75, both Jeff Hoffman (left) and Franklin Chang-Diaz surpassed a cumulative 1,000 hours aboard the Space Shuttle. Photo Credit: NASA, via Joachim Becker/SpaceFacts.de

The crew promised they would be quiet at critical periods, in order to minimise disturbances through the shuttle's structures and their potential impact on the sensitive USMP-3 experiments. "Very quickly, we learned what activities were causing disturbances and we would stop those," Hoffman continued. "They told us after the flight that it was as quiet as they had ever seen it. They could see the vernier jets firing; they made more noise than we did! In order to accomplish this, they had to declare that these eight-hour periods, when the other shift was asleep, were the so-called 'quiescent periods'. They weren't allowed to give us any other experiments to do, so for the best part of a week, for eight hours a day, we just had to float and look out the windows. I felt as if I were a space tourist. It was really quite extraordinary!"

The USMP-3 operations ran so smoothly and generated such valuable data that on 4 March NASA decided to extend the STS-75 mission by 24 hours to almost 15 days. In terms of microgravity research, STS-75 had proven a superb success, hampered only by the tether breakage which lost almost a full day of electrodynamic measurements. Nevertheless, the reflight did demonstrate the concept of powering spacecraft using conducting tether systems. Columbia's return to Earth, already extended until 8 March, was postponed by an additional 24 hours, due to a forecast of low clouds and the chance of rain and gusty winds in Florida. Although weather conditions were acceptable at Edwards Air Force Base, NASA managers decided to hold out for an improvement on the East Coast. A cold front passed through KSC on 7 March and was expected to become stationary by the 9th, perhaps leading to an upper-level low-pressure system which could produce clouds and showers. Fortunately, the weather on the 9th proved acceptable, and Allen and Horowitz guided Columbia to a smooth landing on Runway 33 at 8:58:21 a.m. EST.

"All right!" yelled the entire crew, in unison, at the instant of touchdown.

"We copy your elation," came the reply from Mission Control.

With Allen and Nicollier both making their third shuttle missions, and Horowitz, Cheli, and Guidoni on their first flights, it was Hoffman and Chang-Díaz—both of whom were on their fifth space voyages—who were the most experienced members of the STS-75 crew. In fact, both men accumulated a total of 1,000 hours of experience aboard the shuttle during this mission; Hoffman was the first person to pass the milestone on 29 February 1996, with Chang-Díaz entering second place on 8 March, shortly before Columbia returned to Earth. "I was the first person to complete 1,000 hours on the shuttle," Hoffman told the NASA oral historian, "which I hadn't really thought about." However, test pilots Allen and Horowitz reminded him that in their military community, becoming the first person to accrue 1,000 hours was highly commendable. "Now it turned out that Franklin wasn't going to get 1,000 hours if we had come back when we were supposed to land, but we had a weather delay, so we had one extra day in orbit," explained Hoffman. "Then he was the second person to get 1,000 hours, so we have a nice picture of the two of us floating together holding a big sign saying 2,000. That was quite nice."

Meanwhile, Kenneth Szalai's review panel charged with investigating the TSS-1R tether breakage had been established on 26 February. "Given the public investment in the tethered satellite, it is important that we find out what went wrong," explained Wil Trafton, NASA's then-Associate Administrator for the Office of Space Flight. "To do any less would be a disservice to the American and Italian people." By the time the board's 358-page report was published in June 1996, it blamed "arcing and burning of the tether, leading to a tensile failure after a significant portion of the tether had burned away." The arcing itself was caused by either penetration from a "foreign object" (though not orbital debris or micrometeoroids) or a tether defect breached its insulating material. (Certainly, it was stressed that "the degree of vulnerability of the tether insulation to damage was not fully appreciated.") This had apparently triggered a local electrical discharge from the copper wire in the tether to a nearby electrical ground.

"The board found that the arcing burned away most of the tether material at that location," Flight International noted, "leading to separation of the tether from tensile or pulling force." In his concluding remarks, Szalai highlighted that the problem was "not indicative of any fundamental problem in using electrodynamic tethers," adding that "constructing a tether that was strong, lightweight and electrically conducting took the project into technical and engineering areas where they had never been before."

To the STS-75 astronauts, a short circuit had been at the forefront of their minds from the outset. "I was able to hook up a very powerful train of optics [and] telephoto lenses and take a close look at the broken end of the tether," said Jeff Hoffman. "I could see that it was brown and charred, so we knew before we ever came home that it almost certainly had been a short circuit that had melted the tether." 

 

Copyright © 2016 AmericaSpace - All Rights Reserved

 


 

 

No comments:

Post a Comment